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The theoretical discussion of smooth surfaces is considerably simpler than
that of a realistic surface, in which the solid, usually a metal, has a well de-
fined crystal structure. The reason is that in the case of a smooth surface
the problem is one dimensional, rather than three dimensional . The analy-
sis of a realistic metal surface potential in contact with an ionic solution is
extremely difficult, and requires the use of very large computers. We would
like to discuss a simple model of a structured interface which predicts sur-
face phase behavior, for the adsorbed layers, and which is mathematically
tractable. In fact, if the correlation functions of the smooth surface model
are known to all orders, then the properties and correlation functions of our
model can be computed exactly, at least in principle.

The model [?] combines two ideas that have been used a very long
time ago: Boltzmann’s sticky potential [?}], and the adsorption site model of
Langmuir [?]. The elegant work of Baxter [?] in which the Percus-Yevick
approximation of the sticky hard sphere model is solved and discussed, shows
that this model has a particularly simple mathematical solution. In Baxter’s
work the potential has the form

e~ = 1 4 A§(r — 07) (1)

where # = 1/kT is the usual Boltzmann thermal factor, u(r) is the inter-
molecular potential, A is the stickiness parameter, r = (z,y, 2) is the relative
position of the center of the molecules, and ¢ is the diameter of the molecules.
The right hand side term represents the probability of two molecules being
stuck by the potential u(r): this occurs only when the two molecules actually
touch, and for this reason we use the dirac delta function é(r — 0~), which
is zero when the molecules do not touch, is infinity when they do, but the
integral is normalized to one. The stickiness is represented by the parameter
A, which except for a normalization factor, can be considered as the fugacity
of the formation of the pair.

The Langmuir adsorption sites can be represented by a collection of
sticky sites of the same form as was suggested by Baxter. Only that now
we do not have a sphere covered uniformly by a layer of glue, but rather
a smooth, hard surface with sticky points, which represent adsorption sites
where actual chemical bonding takes place. For this model, equation ?? has
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to be changed to
e Pua®] = 1 4 A, (R)S(2) (2)

with

Aa(R) = Y Ab8(R — njay — njag) (3)

n1,n2

Here R = (z,y) is the position at the electrode surface, and z the distance to
the contact plane, which is at a distance o/2 from the electrode. In ??, n;,n,
are natural numbers, and a;, a3 are lattice vectors of the adsorption sites on
the surface. The number ), represents now the fugacity of an adsorbed
atom of species a, onto the surface which has a perfectly ordered array of
adsorption sites. While this is not a requirement of the model, it makes the
mathematical discussion much simpler.

Consider the case of a simple salt dissolved in water, near a metallic
electrode: in the SSM there will be three components: the anion, the cation
and the solvent, and the lattice atoms. In the limiting case of the SSM, the
sizes of the different species play a crucial role in the possible ordering of
the ad layers at the interface. It will be convenient to picture the ions as
having a hard sphere core with a diameter o,, 03 , and the solvent as having
a hard core with diameter o,,. The lattice spacing of the metal surface is d,
and because it is the most stable surface, we will restrict ourselves to the
(111) surface of the fcc crystals, or the (100) face of the hcp crystal, that
is, the triangular lattice. In the most general case, all three components can
be adsorbed competitively, and this situation can give rise to very complex
phase diagrams. In most electrochemical situations the electrode surface is
polarized either positively or negatively, which means that either the cation
or the anion is strongly repelled from the surface, and therefore we need to
consider the adsorption of either a or b and the solvent n on the electrode.
This implies a drastic simplification in the model, because now we can discuss
at least the case of commensurate adsorption in terms of models that have
been solved analytically, such as the spin s = 1/2 Ising model and the hard
hexagon gas model. The phase transitions predicted for these models seem
to be reasonable in terms of the currently available experimental evidence.

There are two cases of chemisorption of electrochemical interest: In the
first one, the charge of the adsorbate is neutralized by the electrons in the
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metal, and this means that the interactions between neighbors on the surface
is attractive. If we are far from the point of zero charge, and the metal is
negatively charged, the contact probability of the anions a is zero for all
practical purposes and we have only the cation b or the solvent n on the
adsorption sites. The problem is then reduced to a spin s = 1/2 Ising model
with ferromagnetic interactions. In the second case there is no discharge of
the adions by the metal. The interactions between the ions of the same sign
is clearly repulsive, so that the nearest neighbor sites to an occupied site are
not going to be occupied.

The possible existence of phase transitions was discussed in the work
of Huckaby and Blum [?]. The observation is that the SSM model maps
the three dimensional interface onto a two dimensional lattice problem. The
phase behavior in the interphase is determined by the mapping of the pa-
rameters, and exact conditions on the existence of phase transitions can be
given.

The spacing between the sites of the lattice is d. This surface is in
contact with a solution. Only two states of occupation are allowed: the sites
are either occupied by an ion or by the solvent, or alternatively in the case of
a pure fluid, by a fluid particle or none. The fluid particles have an exclusion
diameter o, which may or may not be associated with a hard core potential.
Otherwise the interactions are arbitrary. We assume however that the pair
correlations on the surface decay sufficiently fast so that we need to take into
account first neighbor interactions only. There are two possible situations:
If the adsorbate diameter o is smaller than the lattice spacing d, then there
are two possible phases, a dense, crystalline one and a dilute disordered one.
There is a first order transition between them. If the adsorbed particles
exclude all next nearest neighbors, that is when

d<o<,/3d (4)

then the problem is exactly analogous to the hard hexagon problem of Baxter.
In this case there is a second order phase transition between an ordered
v/3%,/3 phase and a disordered one. The partition function is in this case

Z/2° =Y MLt Lantti  1;=0,1 (5)
t
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where 8 = 1/kT and
Bw = —log[g3(d)] (6)
Bu = log[Ap°(0)] (7
This partition function can be mapped onto an Ising model with spin
variables s; = +1 by means of the transformation

si=2%—1 or t.-=1+23" (8)

and using the above definitions we get the exact condition for phase transi-
tions when w < 0
20°(0) = [g2(d)] ™ (9)

The preceding analysis can be illustrated by a fluid of hard spheres in
contact with a sticky triangular lattice of spacings d=o. In this case a good
estimate of both the contact density and the pair distribution function are
obtained from the Percus-Yevick theory

2(0) = ,,(i + ’27’)72 (10)
o3(o) = L (1)
n="E 3 (12)

where 7 is the fraction of occupied volume. Replacing into the previous
expression we get

A= 103(1 - '7)8
6n(1+2)° (1 +29)

(13)

This relation is a necessary but not sufficient condition for the occurrence
of phase tramsitions. A sufficient condition for the occurrence of a phase
transition can be obtained from the work of Potts on the magnetization
of the ferromagnetic Ising model on the triangular lattice [?]. We use the

variable
z = e#*/* = [g}(d)] "/ (14)




Solving now the magnetization equation with this variable we obtain
for the contact pair correlation function the condition

92(d) lerie= 3 (15)

and the value for the critical sticky parameter ) is

Ap°(0) lerie= 1/27 (16)

These are exact results, that are model independent. In our example of
hard core fluid in the Percus-Yevick approximation, we get the critical value
of the excluded volume fraction

Nerit = 0.371 (17)

and the sticky parameter
Aerit = 0.01180° (18)

These exact results are in qualitative agreement with the mean field
theory of Badiali et al. [?], where the first order phase transition is also
predicted. But the quantitative agreement is not good, which illustrates the
pitfalls of mean field theory. In the computer simulations of Caillol et al. [?]
the conditions for the occurrence of a first order phase transition are not
met, because the adsorption sites are of finite size, and for that reason the
occupancy of a site may prevent nearest neighbor occupation. In this case
we expect a second order phase transition to occur.

When there are longer ranged interactions, beyond the nearest neighbor
interactions, Dobrushin [?] has shown that the first order phase transition
still occurs. However, an exact relation is not available.

As was mentioned already in the electrochemical case the contact pair
correlation function of ions of equal sign is practically zero, because of the
Coulomb repulsion which prevents ions of equal sign to approach each other.
However condensed phases in the ad layers are observed in electrochemistry.
In particular the under potential deposition of some metals on electrodes oc-
curs at certain very well defined values of the potential bias [?]. For example




the deposition of Cu on the Au (111) face forms two phases according to the
deposition potential. These phases have been observed ex-situ [?] and in
situ [?] [?] ([?]. At a lower potential a dilute ordered /3 x /3 phase is
formed. At a higher potential a dense commensurate phase is formed. It is
clear from the above considerations that in the dense ad layer case the ions
must be discharged, because then they would form a metallic bond, which
makes w negative, and therefore ferromagnetic. This is supported by the
features of the EXAFS spectra. In the high density phase the near edge
structure corresponds to that of metallic copper, which has a characteristic
double peak. The dilute /3 x /3 phase has the white line characteristic of
the charged ions. We may assume then that in this case the Cu retains part
of its charge, so that the interactions are in this case repulsive. If the occupa-
tion of one site in the triangular lattice also excludes the nearest neighbors,
then the problem is equivalent to the hard hexagon problem of Baxter (?] .
This problem can be solved when the interactions between the hard hexagons
are neglected.

The thermodynamics of the hard hexagon model was recently worked
out by Joyce [?]. In terms of the lattice fugacity,

z = Ap°(0) (19)

The system undergoes a second order phase transition between an ordered
solid like phase and a disordered one. The transition occurs when

Zerit = (11 + 54/5)/2 = 11.09 (20)
The fraction of occupied sites is
Ocrie = (5 — /5)/10 = 0.2764 (21)

We remark that in the limit of highest possible density the occupied sites
fraction is # = 1/3. Consider again the model of hard spheres of equal
size but larger than the lattice spacing. Then we can draw the adsorption
isotherm for different values of the sticky parameter. See figure 1.

Acknowledgements: L.B. acknowledges the support of the Office of
Naval Research. D.H. was supported by the Robert A. Welch Foundation.

7




Figure 1: Adsorption isotherm for & > d. The fraction of occupied sites
is given as a function of the bulk density po?® for the following values of the
stickiness parameters A\/o® : (a) 0.2, (b) 1.0, (c) 2.0, (d) 10 and (e) 40. An
order disorder transition occurs at 8. = 0.2764.
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